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Abstract. The OECD guidelines for QSAR/QSPR (Quantitative Structure Activity/Property
Relationship) modelling and ecotoxicity testing play a significant role in ecological studies by
providing standardised, scientifically validated methods to assess the environmental impact of
chemicals. Laboratory and terrain tests are combined with QSAR/QSPR models, ensuring
consistency, reliability and support for regulatory acceptance, enabling screening and prioritisa-
tion, global harmonisation and promotion of alternatives to animal testing. Tautomerism is a
fundamental structural phenomenon that can significantly influence the predictive reliability of
QSAR/QSPR models used for assessing ecotoxicity and physicochemical properties of chemical
compounds. We examine how tautomeric variation affects molecular descriptors, data curation,
and model performance. We propose practical incorporation of tautomer information into the
model development and cheminformatics pipelines to enhance predictive accuracy and
regulatory applicability. By generating exhaustive tautomeric ensembles, our approach sup-
ports QSAR/QSPR modelling in line with OECD guidelines for regulatory ecotoxicity
endpoints, contributing to the development of robust in silico predictions. By addressing the
challenges posed by tautomerism, this work advances the use of computational methods in

sustainable chemical safety assessment and supports innovation in non-testing approaches.
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Introduction

The OECD Harmonised Templates (OHTs)
are standardised data formats used for reporting
study results on chemical substances, including
ecotoxicological data (Harmonised Templates for
Reporting Chemical Test Summaries (OHTs),
2025). The ecotoxicity endpoints covered by OHTs
include those relevant for regulatory submissions
under REACH (Registration, Evaluation, Autho-
risation and Restriction of Chemicals) (Regulation
-1907/2006 - EN - REACH - EUR-Lex, n.d.), OECD
guidelines, and other international frameworks.
REACH regulation requires a large set of end-
points to be reported in the context of ecotoxicity,
e.g. Acute toxicity to fish (OHT 41), Toxicity to
aquatic algae and cyanobacteria (OHT 46), Chro-
nic toxicity to fish (OHT 42), Toxicity to soil macro-

Ecologia Balkanica
DOI: 10.69085/eb20251216

organisms (OHT 50), Biodegradation and environ-
mental fate endpoints (OHT 24-40) and many
others. In line with Safe and Sustainable by Design
(SSbD) EU recommendations (Caldeira et al., 2023)
and the ongoing shift toward alternative testing
methods, with implications for REACH-compliant
chemical assessments and regulatory data work-
flows, special attention is given to the facilitation
of animal-free testing strategies based on quality
QSAR/QSPR models.

Tautomerism presents a significant challenge
in the processing of structural information. Due to
differences in their topological representations,
tautomers are often treated as distinct molecular
entities. This distinction affects core structure re-
presentation and, in turn, impacts the entire chem-
informatics workflow. As a result, tautomerism
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should not be overlooked (Warr, 2010)—espe-
cially in the context of QSAR modelling and, more
specifically, in ecotoxicity assessments. While the
generation of large volumes of high-quality che-
mical data related to tautomers is a valuable step
forward, it raises an important question: how can
this wealth of data be effectively utilized?

This paper aims to explore the impact of tau-
tomerism on data variability across different con-
texts and to examine how this variability affects
tasks related to chemical information processing
and QSAR modelling. We investigate how incor-
porating multiple tautomeric forms influences va-
rious cheminformatics operations. To the best of
our knowledge, the use of tautomeric information
has so far been limited to a few specific problem
domains, with only isolated examples of its appli-
cation reported in the literature.

Materials and methods

Tautomer generation

We utilised our in-house developed software,
AMBIT-Tautomer, to exhaustively and automati-
cally generate all tautomeric forms of a given che-
mical compound (Kochev et al., 2013). The under-
lying algorithm has been theoretically validated
and benchmarked against leading tautomer gene-
ration tools, demonstrating the efficiency and
reliability of AMBIT-Tautomer in producing high-
quality chemical information. In this study, all
tautomeric forms of the test compounds were
generated using the AMBIT-Tautomer software,
which employs the IA-DFS algorithm —an incre-
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mental approach based on the depth-first search
algorithm. It incorporates tautomeric transforma-
tion rules for 1,3- and 1,5-hydrogen shifts, along
with post-processing steps such as the removal of
topologically equivalent structures and filtering of
allene structures.

Cheminformatics processing

In this study, we used three large data sets, as
summarised in Table 1, with the full datasets avai-
lable in the Supplementary materials. The struc-
tures of generated tautomeric forms were pre-
processed using ChemAxon Standardizer (ver-
sion 5.12.2) including;: extraction of SMILES (Wei-
ninger, 1988) linear notation from sdf files, keku-
lization of aromatic structures, conversion of
explicit hydrogen atoms to implicit ones and re-
moval of stereo information. To reduce computa-
tional time during tautomer generation, additional
structural filtering was applied to the DrugBank
(Knox et al., 2011) and NCI (NCI Database, n.d.)
datasets. Specifically, all molecules containing more
than 60 heavy atoms or more than four rings were
excluded. As a result, the size of the DrugBank
dataset was reduced from 6,477 to 5,550 struc-
tures. The same preprocessing approach was
applied to the NCI dataset. The original NCI
dataset contained 203,576 compounds, which
initially yielded 3,767,644 tautomeric forms. After
filtering, a subset of 70,878 structures was selected
for this study, resulting in a total of 1,379,518
tautomeric forms used in subsequent analyses.

Table 1. List of the used data sets and their main characteristics.

Dataset Number of Number of generated Average number of
Name structures tautomeric forms tautomers per structure
Drug Bank 5550 174,777 32
NCI 70878 1,379,518 14
Ames 5451 73,028 13

Comparison and Testing

This study presents an in-depth analysis of the
variance in descriptor and fingerprint values indu-
ced by tautomerism. Molecular descriptors and
fingerprints for all datasets and their correspond-
ding sets of tautomeric forms were calculated using
PaDEL-Descriptor (Yap, 2011).

The impact of tautomerism on a given mole-
cular descriptor was assessed using the mean rela-
tive standard deviation (RSD), calculated across all
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compounds with at least two tautomeric forms.
The relative standard deviation, RSD (D), for the j-
th descriptor of structure, i, with n; tautomers (k=1,
2, ..., nj), was computed as follows:

(1)

RsD(D;) = \/%2:;1 (Dg‘j - mean(Dij))z /mean(D;;)
The mean RSD for descriptor j across a
data set containing n structures (i=1, 2, ..., n) is
calculated using the following formula:

@).

mean — RSD(D;) = > ¥, RSD (D)
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QSAR model building

We utilized two existing QSPR models for
prediction of the partition coefficient LogP - the
XlogP and Crippen LogP models, as implemented
in the Chemistry Development Kit (CDK) (Stein-
beck et al., 2006) and integrated into the PaDEL-
Descriptor software.

In addition, we developed two new QSAR
models as part of this study:

1. An AMES mutagenicity model, trained on
a dataset of 5451 compounds, was built using the
Random Forest algorithm with 80 trees. A total of
623 fingerprint bits (selected from 2212 finger-
prints calculated with the PaDEL software) were
used as input features.

2. An aquatic toxicity QSAR model for
Tetrahymena pyriformis was constructed using a
training set of 644 structures and an external va-
lidation set of 110 compounds.

Two principal variants of the aquatic toxicity
model were created: a conventional model (CM)
that does not incorporate tautomeric forms and a

weighted model (WM) that uses tautomer-weigh-
ted descriptor values to account for tautomerism.
All model variations were based on PaDEL des-
criptors (0D, 1D and 2D) and developed using
WEKA software (version 3.7.9) (Frank et al., 2016).
Descriptor selection was carried out using the
CfsSubsetEval evaluator in combination with the
Best First search strategy. Several machine lear-
ning algorithms were tested: KNN (k = 10) with
inverse distance weighting and Manhattan distance,
ExtraTree, and REPTree classification algorithms.
For the conventional model, 27 descriptors were
selected out of 729 total PaDEL descriptors, while
24 descriptors were chosen for the weighted mo-
del. The list of selected descriptors and their cor-
responding mean RSD values is presented in Table 2.

The mean absolute error (MAE), a key sta-
tistical measure of model performance, was calcu-
lated (see Eq. 3) for different subsets of com-
pounds, grouped by the number of tautomeric
forms they possess:

MAE = >3, |P; — F(S) 3).

Table 2. Selected descriptors for the Conventional Model (CM) and the Weighted Model (WD)
with the corresponding mean RSD values.

CM Descriptors Mean RSD WM Descriptors Mean RSD
ALogp2 0.221 ALogp2 0.221
CrippenLogP 0.152 ATSc3 0.642
ETA_Alpha 0 CrippenLogP 0.152
ETA_AlphaP 0 ETA_Alpha 0
ETA_dAlpha_A 0 ETA_AlphaP 0
ETA_dEpsilon_A 0.001 ETA_dAlpha_A 0
ETA_Epsilon_1 0 ETA_dEpsilon_A 0.001
maxdS 0.003 ETA_dEpsilon_B 0.182
maxHCsats 0.169 ETA_dEpsilon_D 0.301
MDEN-11 0 ETA_Epsilon_1 0.0004
MDEN-33 0 maxdS 0.003
mindCH?2 0.078 maxHCsats 0.169
mindS 0.003 MDEC-11 0
minHBint7 0.002 MDEN-11 0
minHsSH 0.0004 MDEN-33 0.08
minsNH2 0.068 mindS 0.003
MLFER_BH 0.08 MLFER_BO 0.123
MLFER_BO 0.123 n5Ring 0
n5Ring 0 n7Ring 0
n7Ring 0 ndssS 0.001
ndssS 0.001 nT7Ring 0
nssssC 0 SddC 0
nT7Ring 0 SHCHnX 0.106
SddC 0 SHssNH 0.021
SHCHnX 0.106

SHsSH 0.004

SHssNH 0.021
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Results

Fig. 1 illustrates the variation of two different
molecular descriptors for the compound tacrine,
which has 22 tautomeric forms generated with the
AMBIT-Tautomer software. As shown, the des-
criptor values exhibit notable variability, with re-
lative standard deviations (RSD) as follows: TIE
(E-state topological parameter) - RSDme = 0.07
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(7%) and DELS (molecular electrotopological
variation) - RSDpgrs = 0.11 (11%). These RSD va-
lues serve as localised measures of data variability
for this specific molecule and highlight the in-
trinsic uncertainty introduced by tautomerism. Such
information could be leveraged to assess or weight
the reliability of a chemical structure within QSAR
modelling and related cheminformatics tasks.
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Fig. 1. Descriptor variation for the molecule of tacrine due to 22 tautomeric forms.

Fig. 2 presents histograms of the mean rela-
tive standard deviation (mean-RSD) values for
PaDEL descriptors, calculated for the NCI and
DrugBank datasets. The results from both datasets
are consistent and reveal that approximately 60%
of the descriptors show no variation or only sta-
tistically insignificant variation due to tautomer-
rism. These descriptors are primarily atom counts,
other constitutional descriptors, and autocorrela-
tion descriptors (ATS) based on properties un-
affected by tautomeric shifts, such as atomic mass,
ring counts, or functional group counts that do not
involve tautomerizable atoms.

About 30% of the descriptors exhibit mode-
rate variability, with mean-RSD values in the
range of 0.05 to 0.15. In our view, these descriptors
should be considered carefully in various chem-

informatics applications. Approximately 10% of
the descriptors demonstrate high variability, with
mean-RSD values exceeding 0.20, and in some
cases, even greater than 1.00 (i.e., 100%). Notably,
the descriptors with the highest variability
include: hydrophilic and hydrophobic factors
(including various models for LogP), hydrogen
bond donors count, topological autocorrelations
based on partial charges etc. Importantly, many of
these highly variable descriptors are essential for
QSAR modelling, including LogP, H-bonding
features, and charge-related information. This
underscores the importance of accounting for
tautomerism in cheminformatics workflows that
rely on such descriptors, particularly in the de-
velopment of robust and reliable QSAR models.
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Fig. 2. Distribution of mean-RSD values for PaDEL descriptors (statistics are performed for NCI
and DrugBunk data sets).
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Hashed fingerprints are calculated using a
dynamic set of fragments, uniquely generated for
each molecular structure. These fragments are
derived by exhaustively searching all topological
paths within the molecule, typically considering
all paths up to a specified maximum length. Each
identified path (i.e. fragment) is then encoded by
applying a hash function, which maps the frag-
ment to one or more bit positions in the fingerprint

vector. Our results indicate that hashed finger-
prints are significantly affected by tautomerism,
primarily due to changes in topological paths
caused by the redistribution of double bonds. This
structural variation alters the set of generated
fragments, leading to noticeable differences in the
resulting MACCS fingerprint representations of
tautomeric forms, as shown in Table 3.

Table 3. Hashed fingerprints for the tautomers of methimazole.

Structure Fingerprint bits equal to 1 N rp
S
9,17,18,24,30,36,41,57,75,83,90,111,134,178,202,274,309,346,357,374,4
__ 02,468,544,558,560,561,577,589,600,615,651,657,659,660,664,712,722, 56
AN N 742,743,745,751,802,815,822,846,847,856,873,877,921,931,935,949,953
\:/ ,954,972
SH
2,12,13,18,32,56,88,137,146,148,152,156,178,195,215,219,222,228,229,
N 238,284,287,318,345,352,374,375,380,413,449,485,490,505,528,533,543 68
N N ,575,592,615,620,655,681,736,742,743,745,798,850,855,879,883,886,90
\—/ 8,912,913,921,934,952,953,964,970,972,973,978,984,986,990,994
S
18,41,72,73,75,106,130,141,201,232,234,239,259,262,263,265,309,328,3
- 48,353,361,389,392,429,456,506,511,514,538,544,600,601,611,622,638, 57

,972,975,1017,1020,1023

651,658,660,685,687,712,720,742,743,745,913,921,935,949,953,954,955

Table 4 presents the variation in XLogP
values (Wang et al., 1997), calculated using the
CDK software library (version 1.4.18) across all 15
tautomeric forms of violuric acid. The XLogP
values range from -1.26 to 1.23, indicating that

some tautomers are predicted to be hydrophilic,
while others are considered hydrophobic. Simi-
larly, the predicted Ames mutagenicity results show
variation: while most tautomers are estimated to
be mutagenic, two are predicted to be non-mutagenic.

Table 4. Predicted Ames mutagenicity and XLogP values for all tautomers of violuric acid.

Violuric acid tautomers

Ames Mutagenicity

/SMILES notations/ (model) XLogP
O=CINC(=0)C(=NO)C(=O)N1 mutagenic 0.135
O=CIN=C(O)N=C(O)C1(=NO) non-mutagenic -0.086
O=CIN=C(O)C(=NO)C(0)=N1 non-mutagenic 0.267
O=CIN=C(O)C(=NO)C(=O)N1 mutagenic 0.041
O=CIN=C(O)NC(=0)C1(=NO) mutagenic 0.361
O=NC1=C(O)N=C(O)N=C1(0O) mutagenic -0.102
O=NC=1C(=O)NC(O)=NC=1(0) mutagenic -0.084
O=NC=1C(=O)N=C(O)NC=1(0O) mutagenic 1.230
O=NC=1C(0)=NC(=O)NC=1(0O) mutagenic 0.698
O=NC=1C(=O)NC(=O)NC=1(0O) mutagenic 0.363
O=NC1C(O)=NC(=O)N=C1(O) mutagenic -0.277
O=NC1C(=O)N=C(O)N=C1(O) mutagenic -1.056
O=NC1C(=O)NC(=O)N=C1(O) mutagenic -0.932
O=NC1C(=O)N=C(O)NC1(=0) mutagenic -1.038
O=NC1C(=0)NC(=O)NC1(=0O) mutagenic -1.267
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Fig. 3 illustrates how the mean absolute error
(MAE) varies with the number of tautomers. Ap-
plying a weighting scheme, based on average
values (AV), improves the CrippenLogP> model by
approximately 0.15 logarithmic units for struc-
tures with 4 to 50 tautomers. However, this weigh-
ting scheme negatively impacted model perfor-
mance for structures with a very high number of
tautomers. The sample size for these structures is
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very limited, and the statistics are less represent-
tative. This decline can be attributed to the simple
averaging method used, which assigns equal
weight to all tautomers —including many chemi-
cally irrelevant ones —when calculating the mo-
dified model, thereby degrading the results. This
effect could likely be mitigated by employing a
more refined weighting approach, such as avera-
ging only the top five lowest-energy tautomers.

Crippen LogP (PaDEL)

—&—MAE CrippenLogP B MAE CrippenLogP-AV
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5 11 A
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2 3 4 5 6+10 11+20 21+30 31+50 51+100 >100

Number of tautomers per structure

Fig. 3. Mean absolute error (MAE) of the Crippen LogP model (lines connected) and its weighted
model modification across all tautomeric forms.

Discussion

The redistribution of double bonds alters the
topological structure, making the 2D (topological)
structure the primary representation level affected
by tautomerism. As a result, tautomerism also im-
pacts the 3D structure due to changes in atom
hybridisation and bond orders. Some 1D des-
criptors are influenced as well, since these consti-
tutional descriptors incorporate partial topolo-

gical information (e.g., counts of specific small
groups). Generally, no significant effect of tauto-
merism is expected on 0D descriptors, as these are
purely constitutional and do not consider any
topological information. It is worth noting that the
classification of 0D and 1D descriptors can vary
between software packages, and some literature
sources do not differentiate between these levels

at all (Fig. 4).

@ OH (b) (c)
RN
NH, NH,” X OH
nDB=2 nDB=0 O nDB=4

ring-chain
tautomerism

Fig. 4. Variation of constitutional-OD descriptor, nDB, for different types of tautomeric
transformations.
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Typically, constitutional 0D descriptors - such
as nO (number of oxygen atoms), nC (number of
carbon atoms), MW (molecular weight), nSB
(number of single bonds), and nDB (number of
double bonds) - are not affected by tautomerism,
as they represent atom counts or sums of elemen-
tal properties without considering molecular to-
pology. Usually, the nDB descriptor remains un-
changed during tautomerism because the total
number of double bonds is conserved despite
their redistribution. However, if the tautomer
transformations involve a triple-bonded carbon
converting to an allene-like structure (with two
double bonds), some constitutional 0D descript-
tors - like nDB and nTB (number of triple bonds) -
can change (see Fig. 4b). Similar changes may
occur in more complex ring-chain tautomerism
cases (see Fig. 4c). Ring-chain tautomerism poses a
significant challenge and is typically not handled
systematically by most software tools. Excluding
ring-chain transformations, the impact of tauto-
merism on constitutional 0D descriptors can
generally be considered negligible.

Impact of tautomerism on fingerprint calcu-
lation

Molecular fingerprints are bit-vectors that
compactly encode information from a molecule’s
topological structure. They are widely used in key
cheminformatics tasks such as database screening,
similarity searching, QSAR/QSPR modelling,
and identifying biological activity cliffs and
ecotoxicity anomalies. Fingerprints can be genera-
ted using various computational techniques,
including key(fragment)-based methods, hashed
fingerprints, or by binning continuous descriptor
values into discrete intervals, each assigned to a
specific bit. The primary advantage of fingerprint-
based approaches is their exceptional speed; as
bitwise operations are among the fastest computa-
tions on a computer. This efficiency enables rapid
processing of very large chemical datasets, which
explains their widespread use. Table 3 illustrates
the significant impact that tautomerism can have
on fingerprint values. The primary reason for this
outcome aligns with previous discussions: tauto-
meric forms significantly alter the topological
representation. For example, the three tautomers
of methimazole (see Table 3) have CDK hashed
fingerprints with 56, 68, and 57 bits set to 1,
respectively, out of 1024 bits based on molecular
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graph paths up to eight atoms in length. More-
over, the first and second tautomers share only 10
common bits, the first and third share 10 as well,
and the second and third share just 8. In this case,
more than 80% of the fingerprint bits are distinct
across the tautomers. Such variation can signifi-
cantly affect structure similarity measures and,
consequently, the outcomes of similarity searches.
Most machine learning approaches for QSAR /
QSPR modelling —including modern generative
Al—rely on the “similarity principle”, which
assumes that structurally similar molecules ex-
hibit similar biological activities and toxicities. For
instance, QSAR models based on the k-nearest
neighbors (kNN) method depend heavily on a
defined similarity measure.

Impact of tautomerism on QSAR/QSPR
modelling

In the previous sections, we demonstrated
that tautomerism affects all fundamental chemin-
formatics tasks that precede QSAR/QSPR mo-
delling, including topological (2D) and geomet-
rical (3D) structure representations, descriptor
calculations, and fingerprint generation. Since
these foundational steps are significantly influen-
ced by tautomerism, it is reasonable to expect that
the final QSAR/QSPR model outputs will be
affected as well. Table 4 illustrates the variance in
model predictions across different tautomeric
forms when tautomerism is not accounted for
during model construction, highlighting this
variability as a post-modelling artefact due to tau-
tomerism. Although this represents a post-model-
ling scenario (i.e., tautomers were not included
during model training or validation), the results in
Table 4 still offer valuable insight into the influ-
ence of tautomerism and suggest potential stra-
tegies for refinement. One such example is shown
in Fig. 3, where applying a post hoc average of
model predictions across tautomeric forms leads to
an improvement over the original model output.

It can be reasonably expected that accounting
for tautomerism during model development
would improve ecotoxicity prediction. This hypo-
thesis was confirmed in our study through the
development of a QSAR model for aquatic toxicity
against Tetrahymena pyriformis. We created two
model variations: a conventional model (CM),
which does not consider tautomers, and a weigh-
ted model (WM), which uses descriptors averaged



over all tautomeric forms of the molecule. Both
models share 20 common descriptors (see Table
2), with the CM including 7 unique descriptors
and the WM including 4 unique ones. This pre-
liminary descriptor analysis indicates that tauto-
merism influences the descriptor selection process
as well. Additionally, Table 2 highlights the con-
cept of "cascading modelling," where the Crippen-
LogP QSPR model is selected as an input des-
criptor for the ecotoxicity QSAR model. This fur-
ther highlights the importance of accurate and
tautomer-aware modelling to build reliable pre-
dictive systems and mitigate the risk of cascading
error propagation.

Fig. 5 demonstrates how incorporating tauto-
meric information during model construction
enhances predictive performance. QSAR models
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for Tetrahymena pyriformis toxicity were evaluated
using both 5-fold cross-validation (denoted as
CV5 in the figure) and an external validation set
(Ext-Val Set). In both cases, the weighted model
(WM), which accounts for tautomerism, outper-
formed the conventional model (CM), which does
not.

On the external validation set, the WM model
achieved a higher correlation coefficient (0.75 vs.
0.70) and a lower mean absolute error (MAE) (0.44
vs. 0.51) compared to the CM model. Similar
improvements were observed in the cross-
validation results, with the correlation coefficient
increasing from 0.79 to 0.82 and the MAE de-
creasing from 0.48 to 0.44. These results support
the benefit of including tautomeric variability in
model development.

CM vs WM
CorrCoef
CorrCoef
0.79 CorrCoef 0.82 CorrCoef

0.70

MAE
0.51

0.75

MAE
0.44

i

Convetional Ext-Val Set Weighted w.Ext-Val Set
Model - CV5 Model - CV5

Fig. 5. Statistics comparison for Conventional Model (CM) and Weighted Model (WM) for Aquatic
toxicity against Tetrahymena pyriformis.

Conclusions

Tautomerism affects molecular descriptors
and, in turn, the accuracy of QSAR/QSPR models,
as shown in this study. There is currently no
systematic approach for integrating tautomers
into QSAR/QSPR modelling, and OECD guide-
lines offer no recommendations for incorporating
tautomeric information in ecotoxicity or chemical
property assessments.

We propose two practical strategies for ad-
dressing tautomerism in QSAR/QSPR modeling:
(1) post hoc weighting of model outputs based on
tautomeric forms, as shown in Ames mutageni-
city and XLogP models; and (2) use of weighted
molecular descriptors, demonstrated in our aqua-
tic toxicity model.

Ultimately, this work highlights how rigo-
rous tautomer enumeration and its informed
application across data processing, predictive mo-
delling, and regulatory frameworks can enhance
chemical safety assessments, particularly for eco-
toxicity endpoints. It also supports the advan-
cement of digital chemical innovation in align-
ment with EU policy objectives and sustainable
chemistry initiatives.

Supplementary materials

All datasets and modelling data are available
at the following Zenodo repositories:
https:/ /doi.org/10.5281/zenodo.16421375;
https:/ /doi.org/10.5281/ zenodo.16421491;
https:/ /doi.org/10.5281/zenodo.16420004 and
https:/ /doi.org/10.5281/zenodo.16441958.
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