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Abstract. Water quality refers to the physical, chemical and biological characteristics of water 
that determine its suitability for a specific use, such as drinking, industry, irrigation or sup-
porting aquatic life. It is assessed by comparing water’s properties against established standards 
for various uses. Factors influencing water quality include natural elements like weather and 
geology, and human activities like pollution and land use. Water Quality Index (WQI) is a 
widely used tool for summarizing and communicating water quality information. It is a valuable 
and unique statistical approach that consolidates the experimental results of various physico-
chemical parameters into a single comprehensive and practical term in order to represent the 
overall quality status of water. The aim of the study is to demonstrate the ability of statistical 
methods in water quality prediction, specifically by identifying the most important parameters 
that influence the Water Quality Index (WQI). This involves the use of statistical techniques to 
analyze water quality data and identify the main factors that influence the overall water quality, 
potentially leading to a more efficient and accurate water quality management. The study takes 
in consideration physico-chemical parameters analyzed in Shkumbini River in Albania. The 
laboratory data from six sampling points during four years are gathered and analyzed based on 
water quality standards and statistically with PCA (Principal Component Analysis). The chosen 
parameters to evaluate water quality are TDS, GH, BOD, pH, DO, Cl, HCO3- and thermotolerant 
coliforms, which are also used to monitor the suitability of the PCA method in the determination 
of WQI. The physico-chemical parameters were evaluated against international water standards. 
Additionally, the PCA method showed that the order of indicators determining the WQI 
depends on the distance between the variables and the origin. The study reveals that using the 
PCA method, the recommended nine parameters are sufficient to determine the WQI value, and 
the cumulative proportion of Component 1, Component 2 and Component 3 explains nearly 
63% of the total variance. 
 

Key words: water quality, Shkumbini River, Water Quality Index model, Principal Component 
Analysis. 

 
Introduction 
Water is an essential resource necessary for 

the survival of all living organisms on Earth. 
Consequently, the water quality is crucial for sus-
taining life and for various human activities such 
as agriculture, industry and recreation (Basha et 
al., 2024). The assessment of water quality, there-

fore, becomes an essential task for evaluating both 
the health of the environment and the well-being 
of the population that depends on it. However, 
due to increasing industrialisation, urbanisation 
and pollution from a wide range of sources, both 
surface and groundwater resources are increa-
singly at risk of contamination. Natural and anthro-
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pogenic activities contribute significantly to water 
pollution, which poses a threat to ecosystems, 
human health and economic productivity (Lin et 
al., 2022; Kucaj et al., 2022). The control and mana-
gement of water resources requires a multifaceted 
approach, considering institutional frameworks, 
regulatory measures, financial capacity and 
technical expertise (Basha et al., 2024). Agriculture, 
for instance, depends heavily on water quality to 
ensure crop safety and productivity, while pollu-
ted water sources can degrade aquatic ecosystems 
and harm biodiversity (Syafrudin et al., 2021). 
Additionally, the treatment of polluted water is 
often expensive and demands sophisticated techno-
logies (Palansooriya et al., 2020; Osmani et al., 2023). 

Water pollution is commonly characterised 
by alterations in physical, chemical, and biological 
properties, which can adversely affect both hu-
man populations and aquatic environments (Pici-
nini-Zambelli et al., 2025). As such, comprehensive 
water quality assessments, utilising a variety of 
methods to measure specific pollutants and 
contaminants, are crucial for understanding the 
extent of pollution and guiding effective reme-
diation strategies (Altenburger et al., 2019). 

The Water Quality Index (WQI), developed in 
the early 1970s, serves as a tool to assess the health 
of water resources. It provides a numerical represen-
tation of water quality, allowing for the tracking 
and analysis of changes in water quality over time 
(Brown et al., 1972). The WQI is widely regarded 
as one of the most practical methods for simpli-
fying complex water quality data into an easily 
understandable score, which can be used for va-
rious applications (Uddin et al., 2022). Typically, 
the WQI ranges from 0 to 100, with higher values 
signifying better water quality (Uddin et al., 2021). 

The WQI is a composite measure that inte-
grates biological, chemical, and physical charac-
teristics of water, taking into account its intended 
uses and relevant water quality standards (Khalil 
et al., 2011). Water quality can be assessed by 
focusing on a specific parameter for a particular 
purpose, or by selecting critical parameters that 
represent the overall pollution level of the water 
body (Gazzaz et al., 2012). The latter approach ref-
lects the broader status of the water quality, ma-
king it more applicable for diverse assessments. 

Over the years, researchers and environment-
tal agencies across the globe have developed, re-
fined, and validated various WQI models (Uddin 

et al., 2021). The calculation of the WQI index 
simplifies complex data, making it accessible for 
the general public and decision-makers alike. It 
facilitates comparisons of water quality over time 
and across different locations, communicates po-
tential risks to human health and the environment, 
and aids policymakers in prioritising actions to 
improve water quality (Guenouche et al., 2024). 

Albania is blessed with abundant water re-
sources, featuring a vast network of rivers, lakes, 
and underground water reserves. The country is 
home to over 150 rivers and streams, flowing 
predominantly from east to west, which support 
urban areas, agriculture, aquaculture, recreation, 
energy production, and industry (Basha et al., 
2024). Despite its abundance of water resources, 
Albania faces increasing water demand due to 
economic development, industrialisation, and po-
pulation growth. The Shkumbini River, located in 
central Albania, is a significant water body that 
has become a focal point for water quality 
monitoring, particularly due to its location in an 
industrial zone where pollution is a concern. Its 
quality has become an ongoing environmental 
issue, with attention given to pollution sources, 
including industrial and agricultural discharges, 
as well as untreated sewage (Shyti et al., 2024). 
Efforts have been made to address the pollution of 
the Shkumbini River, with various initiatives 
implemented to mitigate the impact of contami-
nants (Basha et al., 2024).  

The Water Quality Index (WQI), considered 
in many research studies, has been applied to 
monitor and assess the water quality in different 
regions of Albania. Some studies have calculated 
the WQI using data collected from multiple river 
locations, while others have focused on specific 
pollution parameters (Shyti et al., 2024). For in-
stance, Damo & Icka (2013) studied the water 
quality index for drinking water in the city of 
Pogradec, finding that the CCME WQI value of 
87.81 indicated that the water quality was “good,” 
with turbidity being the primary issue affecting 
the water. Zela et al. (2020) conducted a five-year 
monitoring program of the Seman River in 
southern Albania, assessing 14 water quality 
parameters and applying the CCME WQI through 
a multivariable approach. Similarly, Gega et al. 
(2022) emphasised the pollution of the Shkumbin 
River from untreated sewage discharges and the 
deposition of industrial waste and agricultural 
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runoff, which contributed to the river's water 
quality deterioration. 

Recent studies, such as that by Gjeci et al. 
(2024), found that the water quality in the Shkum-
bini River was generally good, with WQI values 
ranging from 71 to 90. This was attributed to low 
water temperatures and high precipitation during 
the monitoring period. Despite these positive 
findings, the complexity of water quality data 
poses challenges for effective interpretation, as the 
vast number of parameters involved complicates 
the WQI calculation. To address this, various 
statistical techniques, such as Principal Compo-
nent Analysis (PCA) and Factor Analysis, have 
been applied to simplify the data and reduce 
subjectivity in WQI modelling (Roy & Roy, 2024). 
PCA is particularly useful for reducing the dimen-
sionality of complex datasets while retaining 
essential information, making it an efficient and 
cost-effective method for selecting critical water 
quality parameters (Kopec et al., 2018; Shuquan et 
al., 2015; Benkov et al., 2023; Aminu et al., 2023. 

Multiple Linear Regression (MLR) was pre-
viously applied to assess the WQI of the Shkum-
bini River. Using MLR, we defined an equation for 
the WQI based on three key variables: Biological 
Oxygen Demand (BOD), Hydrogen Carbonate 
(HCO3), and Total Phosphorus (TP), with an R² 
value of 99.6%, demonstrating a high level of ex-
planatory power (Shyti et al., 2024). Additionally, 
machine-learning models, including XGBoost, 
Random Forest, K-Nearest Neighbour, and Naive 
Bayes, were used to predict water quality, achie-
ving high predictive accuracies (98.61%, 94.44%, 
91.22%, and 94.45%, respectively). The models 
highlighted BOD, HCO3, and Total Phosphorus as 
the most significant factors influencing the 
Shkumbini River's water quality, with a strong 
positive correlation (r = 0.85) identified between 
BOD and WQI (Basha et al., 2024). 

This study aims to evaluate water quality 
data from the Shkumbini River using physico-
chemical parameters and PCA, a method known 
for its ability to identify the most influential water 
quality parameters and reduce the complexity of 
data interpretation. The findings of this study are 
expected to support previous conclusions regar-
ding the critical factors influencing water quality 
in the Shkumbini River, while also providing a 
more efficient and cost-effective approach to WQI 
calculation. 

Materials and methods 
Shkumbini River originates from the Vala-

mar mountain located in the southwest of Albania 
and flows for approximately 181 km before 
reaching its delta in the Adriatic Sea. It is one of 
the most important rivers in the central region of 
Albania, passing through diverse landscapes such 
as forests, valleys, and plains (Pano, 1985; Bekteshi 
et al., 2023). The river supports local agriculture 
and its water is often used for irrigation in 
surrounding areas (Miho et al., 2005), thus influ-
encing the environment and economy of the re-
gion (Bani et al., 2020). It drains an area of 2,444 
km2 with a flow direction primarily from east to 
west and discharges an average of 61.5 m3/second 
into the Adriatic Sea (Miho et al., 2005). Along its 
course, Shkumbini River passes through areas 
rich in minerals, including chrome, nickel and 
iron, particularly in the industrial area of Elbasan, 
which has significant industrial activity related to 
metallurgy of these minerals, as well as cement 
production (Gjeci et al., 2024). The urban and 
industrial areas in Elbasan, as well as agricultural 
practices, significantly affect the river water 
quality, introducing various manmade materials 
and thus compromising the ecological health of 
the river (Bani et al., 2020; Hoxha et al., 2023).  

Six monitoring stations along the Shkumbini 
River, starting from its originating area to its delta 
in the Adriatic Sea - Qukës, Librazhd, Xibrakë, 
Papër, Bishqem and Rrogozhinë - were selected 
for a comprehensive study of water quality over 
four years, spanning from 2020 to 2023. The 
selection of these stations was based on various 
factors, including geographical location, the po-
tential introduction of pollutants from agricul-
tural, urban and industrial activities, as well as 
considerations of erosion conditions and other en-
vironmental variables. 

In order to ensure the precision and reliability 
of water quality assessment, water samples were 
collected using 2 L, 1.5 L and 0.5 L containers. The 
sampling protocols adhere to the methodologies 
outlined by USDA (Musselman, 2012), as well as 
the standard in ISO 5667-6 (ISO 2014) and ISO 
5667-5 (ISO 2006), which precise the procedures 
for the collection and handling of water samples. 
Afterwards, the samples were analysed at the 
laboratory of the Regional Directorate of Public 
Health in Elbasan, Albania, according to APHA 
(1998).  
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Fig. 1. Map of Sampling Stations Along the Shkumbini River (Shyti et al., 2024). 

 
Principal Component Analysis (PCA) was 

employed to interpret and group the parameters 
in a dataset that describe key physicochemical 
water quality indicators, such as: pH, General 
Hardness (GH), Total Dissolved Solids (TDS), 
Biochemical Oxygen Demand (BOD), Dissolved 
Oxygen (DO), Chloride (Cl), Total Phosphorus 
(TP), Thermotolerant Coliforms, and Bicarbonate 
(HCO₃). Each of these parameters plays a sig-
nificant role in assessing water quality: 

- pH serves as an index to indicate the 
degree of pollution, particularly in cases of con-
tamination by acidic or alkaline wastes (Saalidong 
et al., 2022; EPA, 2001); 

- Water hardness is attributable to the pre-
sence of carbonates, bicarbonates, sulfates, cal-
cium, magnesium, and silicates (EPA, 2001); 

- High TDS levels are often associated with 
pollution from industrial discharges and agricul-
tural runoff (WHO, 2003); 

-  Biochemical Oxygen Demand (BOD) re-
presents the biological oxygen demand due to the 
decomposition of organic material, which is 
indicative of organic pollution (Ward et al., 2002; 
Tchobanoglous et al., 2003; WHO, 2004); 

- Low DO levels are expected in polluted 
waters due to organic matter decomposition, 
which consumes oxygen (Rajwa et al., 2014); 

- Chloride concentrations in freshwater are 
primarily influenced by evaporation and precipi-
tation, with studies showing that high chloride 

levels can be an indicator of pollution in aquatic 
environments (WHO, 2011; Granato et al., 2015; 
Guedens et al., 2018); 

- Elevated phosphorus levels, often due to 
agricultural runoff and wastewater discharge, can 
lead to excessive algae growth and depletion of 
oxygen in aquatic ecosystems (Vighi & Chiaudani, 
1985; Bennett et al., 2001; Johnes, 2007); 

- Thermotolerant Coliforms are bacteria com-
monly used as indicators of faecal contamination 
in water. Their presence suggests the potential for 
pathogenic microorganisms, posing a health risk 
to humans and aquatic life (Edberg et al., 2000; 
Stevens et al., 2003; Odonkor & Ampofo, 2013); 

- High concentrations of bicarbonates typi-
cally indicate harder waters and may influence the 
solubility of other minerals (Grochowska, 2020). 

According to the relative significance that 
each parameter has in determining the water qua-
lity, the nine parameters were each assigned a 
specific weight values (mg/L), as follows: Total 
Dissolved Solids (TDS) = 6.5 mg/L; General Hard-
ness (GH) = 20 mg/L; Biological Oxygen Demand 
(BOD) = 1.5 mg/L; pH = 7.5 mg/L; Dissolved 
Oxygen (DO) = 5.8 mg/L; Chloride (Cl) = 20 mg/L; 
Bicarbonate (HCO3) = 200 mg/L; Total Phos-
phorous (TP) = 0.09 mg/L; and Thermotolerant 
Coliforms = 600 mg/L. The dataset includes these 
nine physicochemical indicators, along with their 
corresponding water quality index values and 
classification (Basha et al., 2024). 
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 Results and Discussion 
WQI calculation 

The use of the Water Quality Index (WQI) 
dates back to the 1960s. The first application of 
WQI in water quality categorisation was made by 
Horton in 1965, and followed by Brown in 1970, 
who developed a general index for evaluating wa-
ter quality. In 1982, Steinhart et al. introduced a 
novel environmental quality index to summarise 
technical information on the status and trends in 
the Great Lakes ecosystem, and the Water Quality 
Guidelines Task Group of the Canadian Council 
of Ministers of the Environment introduced WQI 
in Canada in the mid-1990s (Uddin et al., 2017). 

Over time, the use of WQI has expanded, 
particularly in developed countries, with many 
researchers applying the index to represent the 

quality status of water following monitoring and 
analysis (Uddin et al., 2021).  

The water quality index (WQI) used in this 
study is based on nine parameters: pH, TDS, GH, 
BOD, DO, Cl, HCO3, TP and Thermotolerant 
Coliforms. A higher WQI indicates better quality 
of water. Typically, a WQI model is composed of 
four components: 

(i) parameter selection 
(ii) sub-indexes process 
(iii) weighting technique 
(iv) aggregation method (Uddin et al., 2021) 
In 2022 Uddin et al. proposed a new classify-

cation scheme for assessing coastal water quality 
using the WQI model (Uddin et al., 2022), and in 
2023 they proposed a model for water quality 
rating (Uddin et al., 2023).

 
Table 1.  Water Quality Index (WQI) Classification Scheme for Coastal and River Waters (Uddin et 

al., 2022). 
 

Classifications 
scheme 

Range of 
score 

Descriptions 

(i) Good 80 - 100 
Good waterbodies are those that meet the guidelines’ values. 
Water quality is maintained and is suitable for all uses. 

(ii) Fair 50 - 79 
Waterbodies that have a few indicators meet the guidelines' 
values; water quality is usually protected with a minor degree 
of impairment. 

(iii) Marginal 30 – 49 
The majority of water quality indicators failed to meet the 
criteria; water quality is unprotected, which may pose a risk 
for aquatic life. 

(iv) Poor 0 - 29 
Poor waterbodies are those that fail to meet all of 
the criteria. Water quality is completely unprotected and 
unsuitable for many specific uses 

 
 

As shown in the validation Table 1, the final 
output of a WQI is a numerical value ranging from 
0 to 100. This method is accompanied by a classi-
fication scheme that categorises water quality into 
distinct classes, ranging from “excellent” to “poor”. 
By utilising this scheme, a single numerical value 
is provided as a representative indicator of the 
overall water quality status, effectively summa-
rising the data set into a comprehensive measure.  

Brown et al. (1972) proposed a method of 
calculation to increase sensitivity, using the follo-
wing formulas: 

𝑾𝑸𝑰 =  ∑ 𝑾𝒊𝒒𝒊     (1) 

𝑾𝒊 =
𝒘𝒊

∑ 𝒘𝒊
  and 𝑸𝒊 = 𝟏𝟎𝟎 ×

𝑽𝒊

𝑺𝒊
  (2) 

where: Wi is the unit weight; 
Si - recommended standard value of the ith 

parameter; 
Qi- sub-quality index of the ith parameter or 

the quality rating scale of each parameter, and for 
the calculation of its nume-rical value, we are 
based on Brown et al. (1972); 

Vi - monitored value of the ith parameter. 
The WQI, calculated according to the collec-

ted data, is then compared with the standards, 
provided in Table 2. 
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Table 2. Calculated Water Quality Index (WQI) Values at Six Sampling Stations Along the 
Shkumbini River (2020–2023). 

 

N. Period 
The sampling points 

Qukës Librazhd Xibrakë Papër Bishqem Rrogozhinë 

1 March 2020 66.91 60.09 81.77 75.44 73.82 120.89 

2 July 2020 58.93 56.50 74.81 73.72 78.77 109.24 

3 October 2020 68.24 88.57 74.81 87.48 75.31 123.73 

4 March 2021 67.94 60.97 60.83 92.77 71.82 125.38 

5 July 2021 90.02 92.84 87.66 79.83 75.60 114.10 

6 October 2021 61.52i 70.74 75.24 81.52 88.49 137.78 

7 March 2022 87.48 83.58 76.41 56.58 60.60 126.74 

8 July 2022 81.08 96.99 77.53 78.99 71.67 103.40 

9 October 2022 68.70 77.51 80.36 76.11 82.07 112.59 

10 March 2023 88.26 80.83 78.29 74.07 77.54 112.69 

11 July 2023 71.25 86.55 88.03 88.14 82.84 122.72 

12 October 2023 67.05 85.48 79.85 91.24 88.33 114.50 

 
 
Principal Component Analysis (PCA)  

PCA is a widely used statistical technique for 
reducing the dimensionality of data, while retai-
ning as much of the variability as possible (Jolliffe, 
2002). By reducing the number of variables, PCA 
simplifies complex datasets, which facilitates data 
visualisation and exploration, and enhances the 
efficiency of subsequent analysis. The primary 
advantage of PCA lies in its ability to remove 
redundant or extraneous variables, thus stream-
lining the dataset and making it more manageable 
(Wold et al., 1987). In PCA, the principal compo-
nents are new variables formed as linear combi-
nations of the original variables, designed to cap-
ture the maximum variance within the data (Jol-
liffe, 2002). In this study, nine variables are con-
sidered, and PCA analysis is implemented to allo-
cate the majority of the information into the first 
component, with progressively smaller amounts 
of variance being captured in the subsequent com-
ponents, thereby creating a reduced set of compo-
nents that best represent the original dataset 
(Zitko, 1994).  

The statistical analysis process for the data 
using Principal Component Analysis (PCA) be-
gins with the construction of the initial data 
matrix, which consists of n rows and p columns, 
where n represents the number of data points and 
p denotes the number of water quality parameters 
(Jolliffe, 2002). Following this, the collected data 

are standardised through z-score standardisation, 
which is z calculated using the formula: 

𝒛𝒊𝒋 =
(𝒙𝒊𝒋 − 𝒙𝒋̅)

𝒔𝒋
 

where zij is the  standardised variable, xj is the 
mean value of the j parameter, and sj is the stan-
dard deviation for the jth parameter. 

This is a crucial step for ensuring that corre-
lations between variables are identified during the 
PCA. To assess the suitability of the dataset for 
PCA, the Kaiser–Meyer–Olkin (KMO) test and 
Bartlett’s test of sphericity are performed. The 
KMO test evaluates the sampling adequacy, while 
the Bartlett’s test assesses the homogeneity of the 
correlation matrix (Bartlett, 1954; Kaiser, 1974). 
Afterwards, the covariance matrices computed to 
identify correlations between the variables, and 
subsequently followed by the calculation of eigen-
values and eigenvectors, to identify the principal 
components (Jolliffe, 2002) 

The next step in PCA involves the creation of 
a feature vector to determine which principal 
component should be retained. The final step 
reorients the data from the original axes to the 
new axes defined by the principal components. 
Each principal component explains a percentage 
of the total variance within the data set, with the 
first component accounting for the highest va-
riance (Jolliffe, 2002).  
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To select the appropriate parameters for PCA 
analysis, the following criteria were employed: 

1. The factors that carry the largest amount 
of the variance of the data are selected. 

2. Only those principal components with 
absolute loadings greater than 30 are selected for 
further analyses, while components with lower 
loadings are discarded, as they contribute less to 
the overall variance (Fraino, 2023). 

The plot in Fig. 2 shows the eigenvalues in a 
downward curve, from highest to lowest. In the 
Cumulative Proportion (Fig. 2), the first principal 
component explains almost 26% of the total 

variance. The second one explains 21% of the total 
variance. The cumulative proportion of Comp.1, 
Comp.2 and Comp3 explains nearly 63% of the 
total variance. 

From the PCA analysis (Fig. 3), it is observed 
that the nine principal components (PC1 to PC9) 
have been generated, corresponding to the number 
of variables in the dataset. For example, PC9 shows 
a positive correlation with both BOD and HCO3, in-
dicating that as the values of BOD and HCO3 in-
crease, PC9 also increases. This positive correlation 
suggests that these two parameters contribute sig-
nificantly to the variance captured by PC9.  

 

 
Fig. 2.  Scree Plot Showing Eigenvalues and Cumulative Variance Explained by Principal 

Components. 
 

 
Fig. 3. Principal Components Derived from Nine Physico-Chemical Water Quality Parameters. 

 

 
From the loading matrix, it is evident that the 

first principal component (PC1) explains 26% of the 
total variance in the dataset. The parameters con-
tributing to PC1 include BOD (0.31), HCO3 (0.31) 
and TDS (0.17), all of which exhibit moderate factor 

loadings. In contrast, parameters such as Cl, Ther-
motolerant Coliforms, DO, GH, TP, and pH show 
weak factor loadings.  

For the second principal component (PC2), 
which accounts for 21% of the total variance, the 
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parameters Cl (0.19) and TDS (0.21) exhibit mo-
derate contributions. Similarly, the third principal 
component (PC3) explains 16.1% of the variance, 
with Thermotolerant Coliforms (0.34) and GH (0.23) 
contributing significantly. This pattern of parameter 
contributions continues for the remaining compo-
nents.  

As can be observed from the biplot in Fig. 4: 
1. Variables that are grouped exhibit positive 

correlation with each other. For example, HCO3 and 
BOD are positively correlated. This finding is par-
ticularly noteworthy, as these parameters have the 
highest values in the loading matrix to the ninth 
principal component (PC9). 

2. The greater the distance between a variable 
and the origin in the biplot, the more effectively that 
variable is represented by the principal components.  

3. Variables that are negatively correlated are 
positioned on opposite sides of the biplot’s origin.  

In summary, PCA has extracted information 
into three factors that are principal components 
PC1, PC2 and PC3, which together account for 
approximately 63% of the total variance in the 
dataset.  

This conclusion aligns with the findings of 
previous studies (Basha et al., 2024; Shyti et al., 
2024), where it was demonstrated through various 
methods that only three of the variables - BOD, TP 
and HCO3 – played a significant role in the cal-
culation of the WQI for the water quality assess-
ment of the Shkumbini River. Based on these 
results, it can be confirmed that PCA is a reliable 
technique for analysing the water quality of 
Shkumbini River. 

 

 
 

Fig. 4. Biplot of Principal Components 1 and 2 Showing Correlation Among Water Quality 
Parameters. 

 

 
Conclusions 
As one of the primary rivers in Albania, the 

Shkumbini River holds significant ecological and 
economic importance, making the study of its 
water quality a critical task. This study contributes 
to the ongoing research focused on the river, 

aiming to assess and utilise PCA as an effective 
tool for identifying the key parameters that in-
fluence the WQI model. PCA is a powerful tech-
nique that generates new, uncorrelated variables, 
effectively eliminating components with low va-
riance.  
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This technique identifies new directions, 
known as principal components, along which the 
data exhibit the most significant changes. By 
projecting the data onto these components, PCA 
reduces the dimensionality of the dataset, making 
it easier to process and analyse.  

This study demonstrates that the first three 
principal components together explain approxi-
mately 63% of the total variance, and precisely 
PC1 accounts for 26%, PC2 accounts for 21% and 
PC3 contributes 16.1%. 

The results of this research, alongside other 
studies on the water quality of the Shkumbini 
River, provide valuable insights for decision-
making bodies. These findings serve as a suppor-
tive platform for policymakers, aiding in the deve-
lopment of strategies to improve the water quality 
of the Shkumbini River. 
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